VISVESVARAYA NATIONAL INSTITUTE OF TECHNOLOGY, NAGPUR DEPARTMENT OF MATHEMATICS

Topic: Assignment-3(PDE) MAL-201, B. Tech., III-Semester (2015).

Separation of Variables Method:

1. Use separation of variables to find the solution of the following pdes:

(i)
$$4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$
. (ii) $y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = 0$. (iii) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$.
(iv) $u_{tt} = u_{xx} - au_t$, where $a \in (0, 1)$. (v) $u_{tt} + u_t + u = c^2 u_{xx}$, $c > 0$.

Wave Equation:

- 1. Solve the wave equation $u_{tt} = c^2 u_{xx}$, 0 < x < l, t > 0 with the boundary conditions u(0,t) = u(l,t) = 0 for t > 0, initial conditions u(x,0) = f(x) and $u_t(x,0) = g(x)$ for 0 < x < l.
- 2. Solve the above wave equation with the following conditions:

(i)
$$l = \pi$$
, $f(x) = x \cos(\frac{5x}{2})$ and $g(x) \equiv 0$. (ii) $l = 4$, $f(x) \equiv 0$ and $g(x) = \begin{cases} x, & 0 < x < 2 \\ 0, & 2 < x < 4 \end{cases}$. (iii) $l = \pi$, $f(x) \equiv 0$ and $g(x) = \sin x$. (iv) $c = 4$, $l = 2$, $f(x) = x(2-x)$ and $g(x) = 1$. (v) $c = 5$, $l = \pi$, $f(x) = \sin 2x$ and $g(x) = \pi - x$.

- 3. Solve the wave equation $u_{tt} = c^2 u_{xx} \sin x$, $0 < x < \pi/2$, t > 0 with the boundary conditions $u(0,t) = u(\pi/2,t) = 0$ for t > 0, initial conditions u(x,0) = 0 and $u_t(x,0) = 0$ for $0 < x < \pi/2$.
- 4. Solve the wave equation $u_{tt} = 9u_{xx} + \cos \pi x$, 0 < x < 4, t > 0 with the boundary conditions u(0,t) = u(4,t) = 0 for t > 0, initial conditions u(x,0) = x(4-x) and $u_t(x,0) = 0$ for 0 < x < 4.
- 5. Solve the initial boundary value problem $u_{tt} = c^2 u_{xx}$, 0 < x < l, t > 0 with the boundary conditions $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(l,t) = 0$ for t > 0, initial conditions u(x,0) = x and $u_t(x,0) = g(x)$ for 0 < x < l.
- 6. Use D'Alembert solution to solve the initial value problem defining the vibrations of an infinitely long elastic string when (i) $f(x) = \sin 2x$, $g(x) = \cos 2x$. (ii) $g(x) \equiv 0$, f(x) = kx(1-x).

Heat Equation:

- 1. Solve the heat equation $u_t = c^2 u_{xx}$, 0 < x < l, t > 0 with the boundary conditions u(0,t) = u(l,t) = 0 for t > 0, initial condition u(x,0) = f(x) for 0 < x < l.
- 2. Solve the above heat equation $u_t = 3u_{xx}, 0 < x < l, t > 0$ with the boundary conditions u(0,t) = u(l,t) = 0 for t > 0, initial condition $u(x,0) = l\left(1 \cos\left(\frac{2\pi x}{l}\right)\right)$ for 0 < x < l.
- 3. Find the temperature distribution in a bar with insulated ends on the interval (0,6) when the initial temperature is e^{-x} for $0 \le x \le 6$ and the thermal diffusivity e^2 is 4.
- 4. A thin, homogeneous bar of length L has initial temperature equal to $25^{0}C$, the right end (x=L) is insulated while the left end (x=0) is kept at zero temperature. Find the temperature distribution in the bar.
- 5. Solve the heat equation $u_t = c^2 u_{xx}$, 0 < x < l, t > 0 with the boundary conditions u(0,t) = 1, u(l,t) = 2 for t > 0, initial condition u(x,0) = 1 for 0 < x < l.

- 6. An insulated rod of length l has its ends A and B maintained at 0^0C and 100^0C respectively until steady state conditions prevail.
 - (i) If B is suddenly reduced to 0^0C and maintained 0^0C , find the temperature distribution in the bar at any time t.
 - (ii) If the temperature of A is raised to $20^{0}C$ and reducing the temperature of B to $80^{0}C$, find the temperature distribution in the bar at any time t.
- 7. A bar of 20cm long with insulted sides has its ends A and B maintained at temperatures $30^{0}C$ and $80^{0}C$ respectively, until steady-state conditions prevails. The temperature of A is suddenly raised to $40^{0}C$ and at the same time that at B is lowered to $60^{0}C$. Find the temperature distribution in the bar at time t.

Laplace Equation:

- 1. Solve for the steady state temperature distribution in a thin flat plate covering the rectangle $0 \le x \le 4, 0 \le y \le 1$, if the temperature on the vertical sides is zero while on the horizontal lower side it is $f(x) = \sin \pi x$ and on the horizontal upper side it is g(x) = x(4-x).
- 2. Solve the boundary value problem governing the steady state temperature distribution in a thin. flat rectangular plate given by $u_{xx} + u_{yy} = 0, 0 < x < a, 0 < y < b$ with the boundary conditions u(0,y) = f(y), u(a,y) = g(y), 0 < y < b and u(x,0) = u(x,b) = 0, 0 < x < a.
- 3. The boundaries of a thin rectangular plate are x=0, x=1, y=0, y=2. The steady state temperature distribution in the plate is to be determined when the vertical edges are insulated. The boundary value problem modelling the temperature distribution is, $u_{xx}+u_{yy}=0, 0 < x < 1, 0 < y < 2$ with the boundary conditions $u_x(0,y)=u_x(1,y)=0, 0 < y < 2, u(x,0)=0$ and $u(x,2)=\begin{cases} x, & 0 < x < 0.5\\ 1-x, & 0.5 \leq x < 1 \end{cases}$. Find the temperature distribution?
- 4. Solve the boundary value problem governing the steady state temperature distribution in a thin. flat rectangular plate given by $u_{xx} + u_{yy} = 0, 0 < x < a, 0 < y < b$ with the boundary conditions $u(0,y) = u(a,y) = 0, 0 < y < b, u_y(x,0) = 0$ and u(x,b) = g(x), 0 < x < a.
- 5. Solve the boundary value problem governing the steady state temperature distribution in a thin. flat rectangular plate given by $u_{xx} + u_{yy} = 0, 0 < x < 1, 0 < y < 1$ with the boundary conditions $u(0,y) = y, u_x(1,y) = -10, 0 < y < 1$ and u(x,0) = u(x,1) = 0, 0 < x < 1.
- 6. Obtain the steady state temperature distribution in a semi-circular plate of radius a whose bounding diameter is kept at 0^0C and the temperature along the semi-circular boundary is given by

(i)
$$u(a,\theta) = 50^{0}C$$
 (ii) $u(a,\theta) = \begin{cases} 50\theta, & 0 < \theta < \frac{\pi}{2} \\ 50(\pi - \theta), & \frac{\pi}{2} \le \theta < \pi \end{cases}$