Fourier Integrals:

- 1. Find Fourier integral representation of the following functions:
 - $\begin{aligned} \text{(i)} \ f(x) &= \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 2 \\ 0, & x \ge 2 \end{cases} \\ \text{(ii)} \ f(x) &= \begin{cases} 0, & x < 0 \\ 1, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases} \\ \text{(iv)} \ f(x) &= \begin{cases} e^x, & |x| < 2 \\ 0, & |x| \ge 2 \end{cases} \\ \text{(v)} \ f(x) &= \begin{cases} e^{-|x|}, & |x| < 1 \\ 0, & \text{Otherwise} \end{cases} \\ \text{(vi)} \ f(x) &= \begin{cases} \sin x, & -2 \le x \le 0 \\ \cos x, & 0 < x \le 2 \\ 0, & \text{Otherwise} \end{cases} \end{aligned}$
- 2. Find Fourier Cosine integral of the following functions:

(i)
$$f(x) = \begin{cases} x^2, & 0 \le x \le 5\\ 0, & x > 5 \end{cases}$$
 (ii) $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi\\ 0, & x > \pi \end{cases}$ (iii) $f(x) = \begin{cases} x, & 0 < x < 1\\ 2-x, & 1 < x < 2\\ 0, & x \ge 2 \end{cases}$

3. Find Fourier Sine integral of the following functions:

(i)
$$f(x) = \begin{cases} x, & 0 \le x \le 2\\ 0, & x > 2 \end{cases}$$
 (ii) $f(x) = \begin{cases} \sinh x, & 0 \le x \le 3\\ 0, & x > 3 \end{cases}$ (iii) $f(x) = \begin{cases} 0, & 0 \le x \le 1\\ 1, & 1 < x \le 2\\ 0, & x > 2 \end{cases}$

4. Use Fourier integral theorem to prove that $\int_0^\infty \frac{\cos \lambda x}{1+\lambda^2} d\lambda = \frac{\pi}{2}e^{-x}$ for all x > 0.

5. Use Fourier integral theorem to show that $e^{-x} - e^{-2x} = \frac{6}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(1+\lambda^2)(4+\lambda^2)} d\lambda$ for all x > 0.

6. Find the Fourier integral of the function
$$f(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2}, & x = 0\\ e^{-x}, & x > 0 \end{cases}$$

- 7. Using Fourier integral theorem, show that $\int_0^\infty \frac{1 \cos \pi \lambda}{\lambda} \sin \lambda x \, d\lambda = \begin{cases} \frac{\pi}{2}, & 0 < x < \pi \\ 0, & x > \pi \end{cases}$
- 8. Find Fourier Sine integral of $f(x) = e^{-ax}$, (a > 0), and show that $\int_0^\infty \frac{\lambda \sin \lambda x}{a^2 + \lambda^2} d\lambda = \frac{\pi}{2} e^{-ax}$ for all x > 0.
- 9. Find the complex Fourier integral of the following functions:
 - (i) $f(x) = \begin{cases} |x|, & -\pi < x < \pi \\ 0, & \text{Otherwise} \end{cases}$ (ii) $f(x) = \begin{cases} \sinh x, & |x| < a \\ 0, & |x| \ge a \end{cases}$

10. Let f(x) be a function defined on $(0, \infty)$, whose Fourier cosine integral coefficient is $A(\lambda)$, then show that at points of continuity $x^2 f(x) = \frac{2}{\pi} \int_0^\infty A^*(\lambda) \cos \lambda x \, d\lambda$, where $A^*(\lambda) = -A''(\lambda)$. (*Note: The factor* $\frac{2}{\pi}$ *is absent in the above result if it is included in the coefficient.*)

Fourier Transforms:

- 1. Find Fourier transform of the following functions: (i) e^{-at^2} (ii) $e^{-a|t|}$ (iii) $e^{-at}u_0(t)$ where, a > 0.
- 2. Find the solution of the following differential equations: (i) $y' - 4y = H(t)e^{-4t}$, $-\infty < t < \infty$ (ii) $y'' + 5y' + 4y = \delta(t-2)$, $-\infty < t < \infty$.
- 3. Let $\mathscr{F}[f(t)] = F(\omega)$ and F(0) = 0, then prove that $\mathscr{F}[\int_{-\infty}^{t} f(\tau) d\tau] = \frac{1}{i\omega} F(\omega)$.
- 4. If $\mathscr{F}[f(t)] = F(\omega)$, then prove that $\mathscr{F}[f(t)\sin(\omega_0 t)] = \frac{1}{2} [F(\omega + \omega_0) - F(\omega - \omega_0)], \omega_0$ be any real number.
- 5. State and prove symmetry property of Fourier Transform.
- 6. Evaluate the following:

(i)
$$\mathscr{F}\left[\frac{1}{5+it}\right]$$
 (ii) $\mathscr{F}\left[t^2e^{-5|t|}\right]$.

7. State frequency convolution theorem and use it to prove $\int_{-\infty}^{\infty} \frac{d\tau}{(2 - i\tau + i\omega)(2 + i\tau)} = \frac{2\pi}{4 + i\omega}.$

8. Find the inverse Fourier transform of following functions:

(i)
$$\frac{e^{4i\omega}}{3+i\omega}$$
 (ii) $\frac{1}{12+7i\omega-\omega^2}$ (iii) $\frac{i\omega}{(i\omega+2)(i\omega+3)}$ (iv) $\omega e^{-\frac{\omega}{16}}$ (v) $\frac{1}{(i\omega+k)^2}$, $k > 0$.

, ,2

9. Find the Fourier Cosine and Sine transforms of the following functions:

(i)
$$f(t) = e^{-t}, t \ge 0$$
 (ii) $f(t) = \begin{cases} \cos t, & 0 \le t \le a \\ 0, & t > a \end{cases}$

10. Find Fourier transform of the function $f(x) = \begin{cases} 1 - x^2, & |x| \le 1\\ 0, & |x| > 1 \end{cases}$. Hence evaluate the integrals: (i) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} dx$ (ii) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos(x/2) dx$.