Visvesvaraya National Institute of Technology, Nagpur Department of Mathematics Assignment-2

1. Find the radius of curvature, centre of curvature and circle of curvature for the given curve at the indicated point

(a)
$$x^3 + y^3 = 3axy$$
 at $(\frac{3a}{2}, \frac{3a}{2})$

(b)
$$y = c \ln \sec(\frac{x}{c})$$
 at (x, y)

(c)
$$x^{(2/3)} + y^{(2/3)} = a^{(2/3)}$$
 at (x, y)

(d)
$$x^2y = a(x^2 + y^2)$$
 at $(-2a, 2a)$

(e)
$$xy^2 = a^3 - x^3$$
 at $(a, 0)$

(f)
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 at $(\frac{a}{4}, \frac{a}{4})$

- 2. Find the point where radius of curvature is minimum for $x^2y = a\left(x^2 + \frac{a^2}{\sqrt{5}}\right)$.
- 3. If R_1 and R_2 are radii of curvature at the extremities if a focal chord at a parabola $y^2 = 4ax$. Then prove that $R_1^{(-2/3)} + R_2^{(-2/3)} = (2a)^{(-2/3)}$
- 4. For the curve $y = \frac{ax}{(a+x)}$ prove that $\left(\frac{y}{x}\right)^2 + \left(\frac{x}{y}\right)^2 = \left(\frac{2R}{a}\right)^{2/3}$
- 5. Prove that $R_1^{(2/3)} + R_2^{(2/3)} = \frac{(a^2 + b^2)}{(ab)^{(2/3)}}$, where R_1 and R_2 are radii of curvature at the extremities of the conjugate diameters of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 6. Find the radius of curvature for the curves whose equations are given in polar form:

(a)
$$r = a(1 + \cos \theta)$$

(b)
$$r^n = a^n \sin n\theta$$

(c)
$$r^2 \cos 2\theta = a^2$$

(d)
$$r = 2\cos 2\theta$$
 at $\theta = \pi/6$

7. Find the radius of curvature, centre of curvature and circle of curvature for the curves whose equations are given in parametric form:

(a)
$$x = \ln t \ y = \frac{1}{2} \left(t + \frac{1}{t} \right)$$

(b)
$$x = a(t + \sin t), y = a(1 - \cos t)$$

(c)
$$x = a \ln(\sec t + \tan t), y = a \sec t$$

(d)
$$x = 2\cosh t$$
, $y = 2\sinh t$ at $t = 0$

(e)
$$x = a \cos^3 t$$
, $y = a \sin^3 t$

(f)
$$x = a\cos t, y = b\sin t$$

8. If R_1 and R_2 be the radii of curvature at the extremities of any chord of $r = a(1 + \cos\theta)$ which passes through the pole, then prove that $R_1^2 + R_2^2 = \frac{16}{9}a^2$

1

- 9. Prove that for the curve $r^2 = a^2 \sin 2\theta$ curvature varies as the radius vector.
- 10. Find the point on the parabola $y^2 = 8x$ at which the radius of curvature is 125/16.
- 11. Find the radius of curvature at (0,0)
 - (a) $y^4 + x^3 + a(x^2 + y^2) a^2y = 0$
 - (b) $x^3 + y^3 2x^2 + 6y = 0$
 - (c) $2x^4 + 3y^4 + 4x^2y + xy y^2 + 2x = 0$
 - (d) $x^3 + 3x^2y 4y^3 + y^2 6x = 0$
- 12. Trace the following curves whose equations are given in Cartesian form.
 - (a) $y^2(a-x) = x^3$
 - (b) $a^2x^2 = y^3(2a y)$
 - (c) $4ay^2 = x(x-2a)^2$
 - (d) $y^2(a+x) = x^2(3a-x)$
 - (e) $ay^2 = x(a^2 x^2)$
 - (f) $y^2(a^2 x^2) = a^3x$
 - (g) $y(x^2 + a^2) = a^3$
 - (h) $3ay^2 = x^2(a-x)$
 - (i) $ay^2 = x(x^2 + a^2)$
 - (j) $x^2y^2 = a^2(y^2 x^2)$
- 13. Trace the following curves whose equations are given in Polar form.
 - (a) $r^2 = a^2 \sin 2\theta$
 - (b) $r = a(1 + \cos \theta)$
 - (c) $r = 2(1 2\sin\theta)$
 - (d) $r = a + b\cos\theta$
 - (e) $r = a \sin 2\theta$
 - (f) $r = a \cos 3\theta$
 - (g) $r = a \sin 3\theta$
 - (h) $r = a\cos 2\theta$
 - (i) $r^2 = a^2 \cos 2\theta$
 - (j) $r = 1 + \sqrt{2}\cos\theta$
- 14. Trace the following curves whose equations are given in Parametric form.
 - (a) $x = a(\theta \sin \theta), y = a(1 \cos \theta)$
 - (b) $x = a(\theta + \sin \theta), y = a(1 \cos \theta)$
 - (c) $x = e^t + e^{-t}, y = e^t e^{-t}$
 - (d) $x = a \cos^3 t, y = b \sin^3 t$